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Abstract: Dementia affects the patient’s memory and leads to language impairment. Research has
demonstrated that speech and language deterioration is often a clear indication of dementia and
plays a crucial role in the recognition process. Even though earlier studies have used speech features
to recognize subjects suffering from dementia, they are often used along with other linguistic features
obtained from transcriptions. This study explores significant standalone speech features to recognize
dementia. The primary contribution of this work is to identify a compact set of speech features
that aid in the dementia recognition process. The secondary contribution is to leverage machine
learning (ML) and deep learning (DL) models for the recognition task. Speech samples from the
Pitt corpus in Dementia Bank are utilized for the present study. The critical speech feature set of
prosodic, voice quality and cepstral features has been proposed for the task. The experimental results
demonstrate the superiority of machine learning (87.6 percent) over deep learning (85 percent) models
for recognizing Dementia using the compact speech feature combination, along with lower time and
memory consumption. The results obtained using the proposed approach are promising compared
with the existing works on dementia recognition using speech.

Keywords: Alzheimer’s disease; speech signal processing; machine learning; deep learning

1. Introduction

Dementia is a general term to describe the loss of memory and other cognitive abilities
that can affect daily life. At present, about 50 million people are affected by dementia
in the world [1]. Dementia symptoms can be divided into three different categories.
The first category is cognitive and executive dysfunction which includes memory loss,
language difficulties, loss of planning and intellectual coordination skills. The second
category is psychiatric symptoms and behavioural disturbances which include depression,
agitation, and delusions. The third category is difficulties with performing daily routine
activities. There are various types of dementia, such as vascular dementia, mixed dementia,
Parkinson’s disease dementia, Huntington’s disease dementia, Frontotemporal dementia,
and Down syndrome dementia [2]. As per a World Health Organisation (WHO) report,
among the various types of dementia found to date, Alzheimer’s disease is the most
common form, accounting for up to 60 to 70% of total cases, followed by Parkinson’s
disease [1]. Dementia affects mainly ageing persons and leads to degenerative dementia, a
neurological/brain disorder. It occurs when neurons in some parts of the brain responsible
for cognitive functions are damaged or become inactive.
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The beginning of dementia consists of cognitive decline and progressive memory
loss. The severity level of dementia is divided into seven stages viz. impairment, very
mild decline, mild decline, moderate decline, moderately severe decline, severe decline,
and very severe decline. Even though the cause of dementia is not yet found, research
reveals the link between the symptoms of the disease and the build-up of harmful proteins
in the brain called amyloid and tau [3]. A common symptom of dementia begins with
the gradual worsening of the ability to remember new information. This also leads to
the functional degradation that can be seen in daily activities such as shopping, writing,
object recognition, housework and self-care tasks [3]. The damage developed is progressive
and irreversible, i.e., there is no cure for dementia, and this leads to impairment and
neural death. However, researchers have mitigated the impact of the disease through early
diagnosis and effective treatment.

The diagnosis of dementia at an early stage is a challenging task [4]. Simple methods
utilised for this are mental state tests which check the patient’s problem-solving skills,
attention span, counting skills and memory. These tests reveal any problem with the parts
of the brain involved in learning, memory, thinking and planning skills but most parts of
these tests are subjective. Biomarkers are used as a screening method for early diagnosis [5]
and these tests are also used to identify and monitor the stage of dementia [6]. Disease-
specific biomarkers from cerebrospinal fluid (CSF) are also used to detect dementia, but
these diagnostic tests are costly and not available at all times [7]. Biomarkers that occur in
the blood (platelets and plasma) were studied by researchers, but to date, no conclusive
results have been found. Important clinical tests based on biomarkers are subjective
assessment of memory, late-life depression or speech, and olfactory and gait analyses. The
technology improvements in imaging with different parts of the electromagnetic spectrum
provide many tools to understand the brain and body changes. Many neurophysiological
tests based on electroencephalography (EEG) [8] and magnetoencephalography (MEG) [9]
are also being examined for their effectiveness in identifying the dementia. Generally, the
diagnosis of dementia is made by magnetic resonance imaging (MRI) [10,11], a technique
that uses magnetic fields and radio waves to produce a 3D image of the brain. In a computed
tomography (CT) scan, the machine images the brain with X-rays at different angles, and
the image is processed to find if any remarkable changes are present [12]. The PET (Positron
Emission Tomography) test uses radioactive traces to map the areas of the brain. This
method detects protein plaques, which are associated with dementia [13].

Recent research suggests that speech is another alternative and reliable modality
for the diagnosis and prognosis of various diseases. Speech conveys information about
words, speaker identity, style of speech, emotion, accent, and the health of the speaker.
Many studies have demonstrated the performance degradation of dementia patients in
different linguistic tests. It can be easily observed that dementia patients have difficulties
with denomination tests, repeat the same ideas, speak with longer pauses and use simple
sentences. In addition, they present monotonous prosody and are less informative than
the control groups [14]. The quality parameters of voice and language are affected by
dementia. The language comprehension deterioration resulting from brain damage known
as aphasia is a common symptom of dementia. This is used extensively in the medical
field to detect the various types of dementia that affect speech and language [6]. Usually, a
neuropsychological examination is used for early detection of dementia, but the accuracy
of these test results purely depends on the ability of the doctor and the tests are subjective.
Images are used in a picture description task in order to study the cognitive ability of
the person. This method is highly complex and testing many patients manually with this
method is costly and time-consuming.

The human voice is produced by air passing through the larynx, throat, mouth,
tongue, lips, nose etc. The speech signal is a combination of amplitude, time, and frequency
modulated carriers and transmits much information such as noise, harmonics, power, pitch,
duration, resonance movements, pitch intonation etc. Computer-based methods are used
extensively to study speech features such as amplitude, pitch, frequency, and gap between
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the words and the frequency of filler words [15]. The quality of speech has been used
in many neurological and psychological studies to detect emotions (of people) such as
happiness, sadness, fear and anger [16], depression levels [17] and to assess suicide risk.
The degradation of speech with the progress of dementia was observed and used as a
tool to detect dementia in the 20th century [18]. The progress in computational power,
combined with software development, has provided powerful tools to perform automated
speech analyses [19]. These tools distinguish between different stages of dementia in
patients, such as early or an advanced stages [20]. Many researchers developed ML
and DL methods to diagnose and classify different emotions [21] and identify dementia
patients to obtain accurate results [22]. In the modern era, alternative methods to remotely
diagnose dementia are gaining significant importance. Many patients are not able to access
sophisticated modalities for diagnosis such as MRI brain image scans, and thus require
alternative methods for recognition/identification that are relatively simpler and involve
reduced physical contact. The speech analysis method is one such simple and efficient
method capable of identifying dementia in the early stage. In this method, the speech
signals recorded during clinical consultation are investigated by software. The objective of
this study is the early detection, evaluation, and classification of dementia in the pre-clinical
stage. In this study, the narrative speech analysis methods along with ML and DL models
are employed to recognize people with dementia. The major contributions are as follows:

• To explore significant speech features that are useful in early detection of dementia by
training various ML and DL models.

• To study the statistical and temporal aspects of the speech features and analyse their
performance along with various ML and DL models.

2. Related Works

Researchers have applied various methods to recognise and classify dementia using
speech features as important biomarkers. During initial research, some early studies
used manually transcribed transcripts to predict dementia. Various linguistic features
were extracted based on syntactic, semantic, and pragmatic analyses of the transcripts.
Simultaneously, the ML and DL models also started gaining increased attention for such
analyses [23]. Another strategy employed is combining automatic and manual transcripts
and extracting different features such as word error rate. Weiner et al. [24] analysed the
dependency of the classification task on the transcription quality and emphasized the
requirement for robust features that can detect dementia, independent of the quality of
transcriptions. Jun Chen [23] proposed an attention-based hybrid network that utilizes
the best aspects of Convolutional Neural Network (CNN) and Recurrent Neural Network
(RNN) models to classify dementia using transcriptions. As technology improves, fast
processing computers and software are used for speech analysis and monitoring. The focus
gradually shifted to phonetic analyses of speech, along with the study of linguistic features.
Hernández-Domínguez et al. [19] experimented with using individual and combined sets of
linguistic and speech features to detect dementia. The speech features considered were only
statistical variants of Mel-Frequency Cepstral Coefficients (MFCC), and they obtained 62%
average accuracy (using speech features alone) through ML models. Saturnino Luz [25]
extracted speech features such as vocalization event and speech rate from noisy speech
samples of dementia subjects and obtained 68% accuracy through a Bayesian classifier.
Jochen Weiner et al. [26] used pause based features such as statistical data of duration of
speech, percentage of pause time, pause counts etc. and the speech features were used to
train a gaussian classifier.

As time progressed, powerful audio processing tools were developed which enabled
the researchers to investigate a larger number and wider range of speech features. Most
early studies as well as current work focus on analyzing the statistical aspects of speech
features. Haider et al. [27] studied the statistical functionals of numerous speech features
such as jitter, shimmer, MFCC, fundamental frequency etc. Various classifiers such as
decision trees (DT), 1-nearest neighbour (1-NN), support vector machines (SVM) [28] and
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random forest (RF) were used to study the speech features and classify dementia. The hard
fusion of results obtained from decision trees trained using distinct speech feature sets gave
an overall accuracy of 78.7% [27]. However, the accuracy achieved by ASR systems tends to
decrease with the age of the speaker [29]. This is due to the voices of elderly persons having
increased breathiness, jitter, shimmer, and a decreased speech rate. In addition to this, the
elderly show articulation difficulties, changes in fundamental frequency, and decreased
voice intensity. Some recent studies suggest that frame level analyses of speech can provide
more insight into the patterns in variations of speech features with time, especially in
affect/emotion analysis [30]. DL models also started gaining significant attention for their
ability to capture such patterns and information from temporal variations of speech features
(at frame level). T. Wanita et al. utilized speech features such as MFCC, F0 envelope, voicing
probability, jitter, shimmer etc. at a frame level. Since the study did not use any linguistic
features, the approach can be extended to multiple languages. The classification of dementia
was performed through CNN and gated convolutional neural networks (GCNN), with the
GCNN model yielding the highest accuracy of 73.6% [31]. Chein et al. [32] used deep neural
network (DNN) architectures to construct a feature sequence generator. The fixed length
feature sequences were then used as input for the classification task through various RNN
architectures [33,34] such as Simple-RNN, gated recurrent units (GRU), long short-term
memory (LSTM) [32] models etc. Log-mel spectrograms, and MFCCs along with their delta
and delta-delta values are also utilized in various studies to recognize dementia subjects,
as well as various DNN architectures such as CNN, RNN and their hybrid combinations
Amit [35]. This research confirms the significance of narrative speech and speech features
for detecting dementia.

With the development of ML and DL research, the development of computer-based
tools that can diagnose dementia from narrative speech is gaining momentum. Many recent
studies have highlighted the advances in ML and DL methods and their importance in
reliable identification of dementia through speech samples. This study proposes to extract
speech features that are generally associated with dementia and other brain disorders and
analyse their significance in dementia recognition. The identification of an appropriate set
of speech features is followed an analysis to investigate if the models are appropriate for
the recognition of dementia.

3. Proposed Methodology

The flow-diagram for the proposed methodology is shown in Figure 1. The different
stages for recognizing dementia can be broadly categorized as dataset preparation, pre-
processing, feature extraction and classification. Each of these stages are discussed in the
following subsections.

3.1. Dataset

In speech processing applications, normally, the speech signals are received in analog
form and digitized later. The digitized stream is recorded in different file formats such as
.mp3, .wav, .aiff, .au, .ra etc. The digital audio files are suitable for computer processing
such as editing, noise removal, amplitude normalization, long pause removal, length
correction etc. The speech data used in this study was obtained from the Pitt Corpus of
the Dementia Bank database [36]. Dementia Bank is a database of multimedia interactions
for the communication and study of dementia. The corpus contains audio recordings and
manual transcriptions of the participants undertaking the standard cookie theft picture
description task. The ‘cookie theft picture description’ dataset was particularly chosen as
the test contains recordings of spontaneous responses that reflects both the participant’s
ability to speak efficiently and their cognitive ability. The dataset can be obtained via a
request for research purposes. For this study, only the audio recordings of participants were
collected. A total of 442 audio recordings were considered, of which 218 were obtained
from dementia subjects and 224 from healthy control (HC) subjects. The pre-processing
activities carried out on audio files are briefly discussed in the next sections.
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3.2. Preprocessing

The original dataset obtained was the recordings of the conversation between the
instructor and the subjects during the picture description task. The dataset had to be
pre-processed suitably before extracting the speech features that could accurately describe
the various aspects of the subjects’ speech. The pre-processing activities were carried out
using open-source software called Audacity [37] (Audacity, 2021). Audacity is an easy-
to-use, multi-track audio editor and recorder. The audio recordings contained both the
participant’s and the instructor’s voices. Since only the participants’ parts of the audio
were of interest, the instructor’s voice was manually removed after listening to the audio
files. The recordings also contained static background noise and sudden impulsive noise
resulting from flipping pages and the opening of doors and windows. To remove the static
background noise from the audio files, the ‘spectral noise gating’ [37] (Audacity, 2021)
technique was used. The background noise spectrum obtained from the audio files’ silence
regions was analyzed and identified as the fingerprint of the static background noise. Later
the entire audio file was analyzed and all the tones that were lower than or equal to the
average values of loudness in the fingerprint were suppressed. In this way, the participant’s
voice is preserved, and the other static background noises were minimized. The sudden
impulsive noises were removed manually, after listening to each audio file. The audio files
were further normalized in amplitude following the instructor’s voice removal and noise
reduction stages. Normalization of the audio files is necessary as these files could have been
recorded using varying setup related to the speaker’s sitting position, microphone location
and distance from the speaker. Hence, speech features extracted from the normalized audio
files aid in training ML and DL models that are robust to variations in distance/volume
etc. The normalized audio files have amplitudes within the range −1 to 1. After the
pre-processing stages, the audio files were saved as 16-bit mono-channel .wav files. The
original sample rate of 44,100 Hz was retained uniformly throughout all the audio files. A
total of 442 pre-processed audio files were obtained, of which 218 belonged to the dementia
subjects, and 224 belonged to the healthy control (HC) subjects. The above-mentioned
pre-processing stages are common for both ML and DL applications.

The audio files were further subjected to additional pre-processing for the DL appli-
cation. The audio recordings of dementia patients contained large durations of silence.
As the long silence regions contain no information, the silence regions with duration of
greater than 0.75 s, were truncated to a duration of 0.75 s. Since the input dimensions for
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the DL models have to be constant, the audio files were further segmented to fixed smaller
duration by splitting/segmenting the recordings into 15 s segments. A 15 s duration was
chosen so that each audio recording contains a significant amount of information in the
form of speech. After pre-processing, the audio files were stored as 16-bit mono-channel
.wav files. The sample rate of 44,100 Hz was maintained uniformly throughout all the
segmented audio files. A total of 865 segmented audio samples were obtained, of which
392 belonged to dementia subjects and 473 to HC subjects. These segmented audio files
were used for the DL application. The waveforms of sample audio signal belonging to
a dementia subject, before and after the pre-processing stages are illustrated in Figure 2.
Following the data pre-processing stage, the audio files were used to extract speech features,
the details of which are discussed in detail in the next section.
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3.3. Feature Extraction

Various speech features considered in this work are jitter, shimmer, fundamental
frequency, (first four) formants, MFCC and gammatone cepstral coefficients (GTCC),
delta-MFCC and delta-GTCC. Since the speech signal is a slowly varying signal or quasi-
stationary, the processing is often performed in shorter frames or windows of duration
20–40 ms [38]. The features can be broadly grouped into two categories viz. time-dependent
features and time-independent features. The features considered for this study are briefly
discussed below.

3.3.1. Time-Dependent Features

The time-dependent set of features are analysed and computed in windows of short
durations, yielding a time-varying set of coefficients for an audio file. The following
features are computed using the above-mentioned method.
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• MFCC: MFCC computes frequency analysis based on a set of mel-filter banks. The
formula to convert from linear frequency scale to the mel-scale [16] is shown in
Equation (1) where the variable ‘f ’ denotes the frequency of the signal.

m = 2595 ∗ log10

(
1 +

f
700

)
(1)

• GTCC: GTCC can basically be defined as a biologically inspired modification of MFCC
that uses gammatone (GT) filters [38]. The algorithm for the extraction of GTCC
coefficients is similar to the one used for extraction of MFCC coefficients [28].

• Delta-coefficients: The delta coefficients represent the first-order derivative over time
or the change in coefficients from one analysis window to another [38]. Since the
simple difference in the coefficients from adjacent windows are a poor estimation of
the derivative, the delta coefficients are computed as the least-square approximation
to the local slope, as described in Equation (2). The delta coefficients are computed for
both MFCC and GTCC. In Equation (2), ‘cn’ denotes the value of the coefficient at the
nth time-step.

di =
∑N

n=1 n(cn+i − cn−i)

2 ∗ ∑N
n=1 n2

(2)

• Log-Energy: The log-energy describes the total energy content of the signal within a
given duration in the log scale [38].

• Formants: The formants are the range of frequencies that are amplified by the shape
of the speaker’s vocal tract and describe the distinct characteristics of the subject’s
voice. The first four or five formants are the most significant as the higher formants
are outside the human hearing range.

• Fundamental frequency: Fundamental frequency [38] describes the frequency of the
audio signal within a given window.

3.3.2. Time-Independent Features

The time independent features are computed for an entire audio file.

• Jitter and Shimmer: Jitter and shimmer provide information regarding the instability in
the frequency and amplitude respectively [27].

• Pitch: Pitch is the relative highness or lowness of the tone as perceived by the ear,
based on the number of vibrations per second produced by the vocal cord [39].

The various features discussed above were utilized in the investigation using various
ML and DL models which are discussed in detail in the upcoming section.

3.4. Classification

ML and DL models were applied for classification purposes. The details of the
experimental setups and the features utilized in each experiment are discussed in the
following subsections. The ML models in the study have been widely used in previous
research for classification using time-independent features [34,40]. The DL models used in
the study are widely used algorithms that generally perform well using time-dependent
features for classification tasks [41,42].

3.4.1. Machine Learning (ML)

The ML experiments were performed using the Weka toolkit [43]. Five-fold cross-
validation was performed using the average values of 44 speech features (as listed in
Table 1) to obtain a generalized performance of the models. The following ML models
were found to be suitable for the classification task: SVM, RF, reduced error pruning (REP),
tree [44] and random tree (RT) [45].
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Table 1. List and number of speech features used for ML and DL Models.

Model/Feature
(No. of

Features)
MFCC

(14)
Delta

MFCC
(14)

GTCC
(14)

Delta
GTCC

(14)

Log
Energy

(1)
Formants

(4) Pitch (1)
Funda
mental

Frequency
(1)

Jitter (5) Shimmer
(5)

Total
Number

of
Features

Random forest X - X - X X X X X X 44

Random tree X - X - X X X X X X 44

REP tree X - X - X X X X X X 44

SVM X - X - X X X X X X 44

ANN X - X - X X - X - - 33

CNN X X X X X X - X - - 62

GRU X X X X X X - X - - 62

LSTM X X X X X X - X - - 62

Bi-GRU X X X X X X - X - - 62

Bi-LSTM X X X X X X - X - - 62

PRCNN X X X X X X - X - - 62

3.4.2. Deep Learning (DL)

The DL models investigated in this study are the artificial neural networks (ANN)
CNN and RNN, and a parallel recurrent convolutional neural network (PRCNN). Five-fold
stratified cross-validation was utilized to obtain a generalized performance of the DL
models. The five-fold split was manually performed to ensure that speech features ex-
tracted from segments of the same audio file were either present completely within the
training set or within the validation set (in each fold) to avoid any forms of data leakage.
Python programming language and TensorFlow-KERAS library were used to build the DL
models and evaluate their performance. The proposed DL models and their designs are
explained below.

• Artificial Neural Networks (ANN):

ANN is a modelling technique based on the human nervous system and its core
component artificial neurons. ANNs consist of an input layer to receive data from outside
sources, one or more hidden layers to process the data and an output layer that provides
one or more output data. Each hidden layer has one or more neurons. Each neuron in
a layer receives inputs from several other neurons of the previous layer, performs some
arithmetic operations on them and passes the sum to one or more neurons of the next
layer [46,47].

The average values of MFCC, GTCC, fundamental frequency and formants are pro-
vided as inputs to the ANN model. Means of 33 features were computed from an audio
sample. The ANN model designed to distinguish dementia samples from HC samples is
shown in Figure 3a. The average values of 33 speech features (as listed in Table 1) were
provided as inputs to the ANN model. The input layer consists of 32 nodes. Three hidden
layers are placed following the input layer of the ANN model and contain 64, 32 and
4 nodes respectively. The ‘LeakyReLU’ activation function was used in the input and the
hidden layers. The final output layer contains a single node and utilizes the ‘Sigmoid’
activation function. A dropout layer with a dropout ratio of 0.5 is introduced between
hidden layers 2 and 3.

• Convolutional Neural Network (CNN):

Since the speech features are portrayed as variation over time, a one-dimensional
CNN model has been utilized which can capture significant patterns in the speech features.
The convolution operation extracts temporal information by sliding predefined filters over
the input [31]. The proposed model designed to identify dementia patients is shown in
Figure 3b. The network consists of four convolutional layers, four max-pool layers and three
fully connected layers. The activation functions used in the network are the ‘ReLU’ activa-
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tion and the ‘Sigmoid’ activation. The MFCC, GTCC, their delta-coefficients, fundamental
frequency, formants, and the log-energy are provided as input to the CNN model.

The input to the CNN model is of the dimension 1292 × 62, where 1292 represents
the time steps and 62 represents the speech feature co-efficient (as listed in Table 1). It is
passed to the first convolutional layer with 32 filters of kernel size 32. The second and third
convolutional layers consist of 64 filters of kernel size 18 and 128 filters of kernel size 12,
respectively. Each convolutional layer uses a stride length of 1 and the ‘ReLU’ activation
function. Each convolutional layer is followed by a max-pool layer. The max-pool size of
the layers is 8, 4 and 2, respectively. The output of the third max-pool layer is converted
into a one-dimensional array through a flatten layer and is then provided as input to a set
of fully connected dense layers of the network, as shown in Figure 3b. The output layer
consists of a single node and utilizes the Sigmoid activation function. A dropout layer is
introduced after each max-pool layer with a dropout ratio of 0.3, which generalizes the
model [31]. The ‘Nadam’ optimizer (Adam optimizer with Nesterov momentum) [45,46]
was used with a learning rate of 0.0001.

• Recurrent neural network (RNN):

RNN are a unique type of neural network that are capable of remembering significant
information in time varying inputs. This is achieved by providing the output of past step
as input to the current step. Two different RNN units are used in this study, GRU [48] and
LSTM networks. GRU and LSTM are unique kinds of RNN that are capable of learning
long-term dependencies. The primary difference between them arises in the fundamental
architectural unit/cell [49]. The LSTM has three gates in their fundamental unit/cell, forget
gate to decide what information to be retained and what to be discarded, input gate to
decide and update the cells values, output gate to decide the next hidden state. The GRU
unit has a similar working architecture but only have two gates in their fundamental unit,
update gate to decide which information is to be added/retained and which are to be
discarded, reset gate to decide what portion of the past information it needs to forget [42].
Generally, it is observed that GRU models can train faster and perform better on a small
training set, and LSTM can remember longer sequences than GRU. Despite these claims,
there is no generalized way to decide which model is better, and their performance can vary
from one scenario to another [32]. The models can further be differentiated as unidirectional
or bi-directional RNNs. In unidirectional RNN models, the network can only access the past
information at any timestep, whereas in bi-directional RNN models the network can access
the past as well as future information [32]. Previous studies suggest that bi-directional
networks can capture more significant information and representations [42].

A total of 62 speech features (as listed in Table 1) extracted at a frame level is used for
the RNN model. The input to the RNN models is of the dimension 1292 × 62 is passed
to the first recurrent layer with 128 RNN units. The second layer also contains 128 RNN
units. The output from the RNN layers is passed through a set of four time-distributed
dense layers. The number of nodes/units in the time-distributed dense layers are 64, 32, 16
and 8 respectively. The advantage of time-distributed dense layers is that they preserve the
time dimensionality, by applying the same dense layer to every timestep.

The output from the time-distributed dense layers is flattened to a 1D vector and fed
into fully connected dense layers as shown in Figure 3c. The final output layer contains one
node and utilizes the ‘Sigmoid’ activation function. The ‘Nadam’ optimizer is used with a
learning rate of 0.0001 and ‘binary cross-entropy’ is used as the loss function. Depending
upon the model, the units/cells used in the first two RNN layers are of the type GRU,
LSTM, Bi-GRU or Bi-LSTM.



Sensors 2022, 22, 9311 10 of 18

Sensors 2022, 22, x FOR PEER REVIEW 10 of 19 
 

 

introduced after each max-pool layer with a dropout ratio of 0.3, which generalizes the 
model [31]. The ‘Nadam’ optimizer (Adam optimizer with Nesterov momentum) 
[45,46]was used with a learning rate of 0.0001. 

 
Figure 3. (a) ANN model design (b) CNN model design (c) RNN model design (d) Parallel RCNN 
model design. 

• Recurrent neural network (RNN): 
RNN are a unique type of neural network that are capable of remembering significant 

information in time varying inputs. This is achieved by providing the output of past step 
as input to the current step. Two different RNN units are used in this study, GRU [48] and 
LSTM networks. GRU and LSTM are unique kinds of RNN that are capable of learning 
long-term dependencies. The primary difference between them arises in the fundamental 
architectural unit/cell [49]. The LSTM has three gates in their fundamental unit/cell, forget 
gate to decide what information to be retained and what to be discarded, input gate to 
decide and update the cells values, output gate to decide the next hidden state. The GRU 

Figure 3. (a) ANN model design (b) CNN model design (c) RNN model design (d) Parallel RCNN
model design.

• Parallel Recurrent Convolutional Neural Network (PRCNN)

Both the CNN and the RNN models show similar performances. Slight variations in
the model performance could arise due to different ways in which the models interpret
and adapt to the input training data. The speech features were investigated further using a
Hybrid PRCNN model [42]. A total of 62 speech features (as listed in Table 1) extracted
at a frame level are used for the PRCNN model. The PRCNN model design is derived
from the CNN and RNN models discussed earlier. The CNN subnetwork consists of four
convolutional layers. The first, second and third convolutional layers contain 32, 64, and
128 filters, respectively and their respective kernel sizes are 32, 18, and 12.

Each convolutional layer is followed by a 1D max-pool layer, with pool sizes of 4,
2 and 2, respectively. A dropout layer is introduced after each convolutional layer with
a dropout ratio of 0.3. The output of the third max-pool layer is then converted to a 1D
vector by utilizing a flatten layer. The RNN subnetwork consists of two RNN layers with
128 GRU units each. The output from the RNN layers is then fed into the set of four
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time-distributed layers with 64, 32, 16, and 8 dense units, respectively. The recurrent layers
defined use the ‘tanh’ activation function, and the dense layers use ‘ReLU’ activation.
The output of the time-distributed dense layers is converted to a 1D vector by passing it
through a flatten layer. The output of the flatten layers of the CNN subnetwork and RNN
subnetwork are concatenated to form a single 1D vector which is further fed into a set
of fully connected dense layers, as shown in Figure 3d. A dropout layer with a dropout
ratio of 0.5 is introduced after the concatenation layer to prevent overfitting [42]. The final
output dense layer contains a single node and utilizes the ‘Sigmoid’ activation function.
The ‘Nadam’ optimizer [45,46] is used with a learning rate of 0.0001.

The results of the experiments and the analyses are discussed briefly in the following section.

3.5. Performance Metrics

The performance metrics considered in this work are precision, recall, F-score and
accuracy, as described in Equations (3)–(6), respectively. Precision is the ratio of true positive
(TP) samples to the total number of samples classified as positive by the model. Recall
is defined as the ratio of true positive samples to the total number of positive samples.
The F-score expresses the harmonic mean of precision and recall, signifying the trade-
off between the precision and recall values. Accuracy represents the fraction of samples
correctly recognized by the model [17]. The following performance metrics are a few of
the most widely used classification metrics that aid in the critical comparison of model
performance and selection of the most optimal models. Accuracy is the most common
metric for preliminary comparison of model performance and it describes the performance
of the model on the entire dataset. The precision and recall metrics provide more insight
into the model performance on the individual classes, which is essential in scenarios where
the dataset is imbalanced.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F − score = 2 × precision × recall
precision + recall

(5)

Accuracy =
TN + TP

Total number of samples (N)
(6)

4. Experimental Results

The experimental work is performed in two stages. The investigation of dementia
recognition is performed using machine learning models, and the second stage involves
the DL models. With various speech features investigated in the work, only those features
found significant in the determination of dementia are associated with the feature extrac-
tion process across each model and considered in the work. Five-fold cross-validation is
performed to determine the effectiveness of the proposed method in each stage.

4.1. Proposed Model for Dementia Recognition Using Machine Learning (ML) Methods

The various features considered for classification through ML methods are jitter, shim-
mer, fundamental frequency, (first four) formants, MFCC and GTCC coefficients. Addition-
ally, average values of five jitter variants, five shimmer variants, fundamental frequency
and the first four formants were also extracted. The average values of MFCC, GTCC, jitter,
shimmer, formants, and fundamental frequency were extracted using MATLAB, using a
hamming window of size 1103 samples (25 ms) and a hop length of 512 samples (≈11 ms).
Overall, 44 features were computed for each of the audio recordings.

This study considered the mean of 44 speech feature coefficients along with RF, random
tree, REP tree and SVM models. The performances of the ML models are shown in Table 2
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and Figure 4. For the HC class, the best precision and recall values were obtained through
RF (84.7%) and SVM (97.4%). For the dementia class, the best precision and recall values
were obtained through SVM (95.7%) and RF (82.2%). Overall, the highest f-score (87.5%)
was achieved by the random forest model. From Figure 4, it is observed that random forest
provides the highest accuracy (87.6%), with average precision, recall and f-score values of
87.95%, 87.35% and 87.5%, respectively, considering both the dementia and HC classes.

Table 2. Performance of machine-learning models.

Model Class Precision (%) Recall (%) F-Score (%)

Random forest
HC 84.7 92.5 88.5

Dementia 91.2 82.2 86.5

Random tree
HC 79.1 76.3 77.7

Dementia 75.7 78.5 77.1

REP tree
HC 79.1 76.3 77.7

Dementia 85.9 76.6 81

SVM
HC 73.3 97.4 83.6

Dementia 95.7 62.1 75.4
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Figure 4. Bar graph showing comparisons of average (five-fold) validation accuracies of the proposed
ML and DL models.

4.2. Proposed Model for Dementia Recognition Using DL Methods

In this stage, the speech features (fundamental frequency (F0), log-energy and the first
4 formants, the first 14 MFCC, 14 GTCC, 14 delta-MFCC and 14-delta GTCC) were found
to be significant. The coefficients and features were computed over a window length of
1103 samples (25 ms), and the hop length was 512 samples (≈11.6 ms). A total of 62 features
coefficients were extracted within a 25 ms window duration. The resultant dataset obtained
from a single audio file has the dimensions 1292 × 62, where 1292 represents the number
of time steps, and 62 represents the features in each time step. This study considered
33 speech feature coefficients for the ANN model and 62 (frame level) speech features
coefficients for CNN, RNN, and PRCNN models. The results obtained through each of
the models are reported in Table 3. For each of the models, the performance is reported
as the mean of five-fold cross-validation. A total of seven DL models were explored, and
their results are summarized in Table 3. The results are computed as an average of five-fold
cross-validation.
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Table 3. Performance of DL models.

Model Class Precision (%) Recall (%) F-Score (%)

ANN
HC 81.3 88 84.5

Dementia 84.4 73.7 78.7

CNN
HC 83.1 89.2 86

Dementia 85.4 77.5 81.3

GRU
HC 84.1 88.5 86.2

Dementia 85.8 78.6 82

LSTM
HC 82 87.9 84.9

Dementia 84.3 76 79.9

Bi-GRU
HC 83.3 88.8 86

Dementia 85.4 77.5 81.3

Bi-LSTM
HC 84.4 86 85.2

Dementia 83.3 80.3 81.8

PRCNN
HC 85.9 87.2 86.6

Dementia 84.7 82.4 83.6

5. Discussion
5.1. Comparative Analysis of the Proposed Approach Using ML and DL Models

Following the experimental work performed using both models for dementia recog-
nition, a comparative analysis was performed to analyse the effectiveness of each model.
Comparing the results of DL models, the highest precision and recall values for the demen-
tia class are obtained with GRU (85.8%, 78.6%) and PRCNN (84.7%, 82.4%). The highest
precision and recall values for the HC class are obtained with PRCNN (85.9%, 87.2%) and
CNN (83.1%, 89.2%). From Figure 4, the PRCNN model provides the best accuracy of
85% with the average precision, recall, and F-score values of 85.3%, 84.8%, and 85.1%,
respectively, over both dementia and HC classes.

Apart from overall accuracy, the dementia class’s recall rate is given more importance
as the model’s most critical task is to recognize the maximum number of subjects who are
truly suffering from dementia. Figure 4 and Table 3 show that even though the performance
of the RNN and CNN model is almost the same, the recall rate (of dementia class) of the
RNN (Bi-LSTM) model is relatively higher than that of the CNN model. The best model in
terms of the dementia class recall rate and overall accuracy is the PRCNN model.

On observing Figure 4, it is noticed that the performance of the ML models varies
over a wide range (from 77.4% to 87.6%), whereas all DL models yield accuracies that
are within a close range (in the range of 81.5% to 85%) and are consistently better than
the lowest accuracy yielded by the ML model RT. If analyzed in aspect of number of
trainable parameters in each DL model, we observe that the CNN and RNN models
contain a significantly larger number of trainable parameters relative to the ANN model
and give only marginal improvement in overall performance. Hence when there is a
requirement for a compact and simpler model to identify dementia while providing a
tolerable performance. Therefore, the ANN model is preferred over the other DL models
proposed. The generalization can be more accurately made when the DL models are trained
on a significantly larger sample of speech data. The accuracy and the loss recorded over
epochs for each of the five folds is shown in the Figure 5.
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5.2. Comparison of the Proposed Work to Other Research

Numerous other research has worked on the same dataset but have utilized linguistic,
and information coverage features in addition to speech features. To make a fair comparison,
the results obtained in this study are compared with those of other research that reported
performances utilizing speech features alone. The performance of models is compared
based on the overall accuracy obtained. The best models and their accuracy in ML methods
and DL methods are tabulated in Table 4.

Through Table 4, it can be observed that compared with earlier studies [19,27,31,50,51],
the RF ML model has provided an improvement of 5.06%, 16.87%, 8.3%, 20.6%, and 14% in
accuracy, respectively, and the PRCNN model provides an improvement of 2.41%, 14.27%,
6.3%, 18%, and 11.4%, respectively. In terms of F-score, compared to the studies [48,50],
the RF model provides an improvement of 1.8% and 5.1% respectively, and the PRCNN
model also provides F-score results comparable to the other research. It is to be noted that
each of the studies mentioned above worked with a different set of speech features and
was performed on different platforms, which may account for the varying performances.

On comparing the ML and DL models from Table 4, it is observed that to yield
similar performance, the DL model requires a relatively higher number of speech features
compared with ML models. Another critical observation is that the lowest number of
speech features used (in other studies from Table 4) with ML models is 75 [27], and the
lowest number for the DL models is 76 (per frame) [31], whereas in this study, the number of
speech features used for the ML and DL models is 44 and 62 (per frame), respectively. These
numbers are relatively lower, and at the same time, yield better classification accuracies. In
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both scenarios using ML and DL models, the number of speech features used is lower than
that utilized by other research, and the results observed are substantially higher than those
of other studies, which suggests that the proposed set of speech features are adequately
robust for identifying dementia subjects.

Table 4. Comparisons of research on Dementia Bank (Cookie theft description task) using only speech features.

SL. NO Research Key Features/Number
of Features

Number of
Features ML/DL Models Accuracy F-Score

1 Triapthi et al. [52] EmoLarge Feature set 6552 BayesNet - 85.7%

2 Lui et al. [53] Bottleneck features
derived from MFCC

512 (per
frame)

CNN and BiLSTM
based neural

network
82.59% 82.94%

3 La Fuente Garcia [54]
eGeMAPS feature set

and Active Data
Representation (ADR)

88 (per
segment) Random forest 70.73% -

4 F. Haider et al. [27]

Emobase feature set 75

Decision tree 78.7% -
ComParE feature set 711

eGeMAPS feature set 3899

MRCG feature set 4688

5
L.

Hernández-Domínguez,
et al. [19]

13 MFCC (mean,
kurtosis, skewness, and

variance)
52 Random forest 67% -

6 T. Warnita et al. [31] Paralinguistic feature
set

76 (per
frame) GCNN 73.6% -

7 ML model (proposed)
MFCC, GTCC, formants,

pitch, jitter and
shimmer

44 Random forest 87.6% 87.5%

8 DL model (proposed)
MFCC, GTCC, formants,
fundamental frequency,

and log-energy

62 (per
frame) PRCNN 85% 85.1%

LDA—Linear discriminant analysis.

6. Conclusions and Future Scope

In this study, the effectiveness of MFCC, GTCC, fundamental frequency, formants, en-
ergy of the signal, jitter, and shimmer speech features for the task of dementia classification
is examined. Apart from exploring ML models such as RF, RT and SVM, DL models are
also explored for the dementia classification task. Utilizing the proposed set of features
mentioned above, the best results observed in the dementia recognition task using the
Pitt corpus dataset are 87.6% with a ML model and 85% with a DL model. In terms of
accuracy, the results obtained are comparable with or better than that those reported in
various previous studies on the Dementia Bank’s Pitt dataset that have worked explicitly
on the speech features alone. The results demonstrate two things. First, the proposed set
of speech features is robust for the detection of dementia. Second, ML models provide
relatively better performance and are more robust compared with the DL models, on the
identified feature set. The DL model performances can further be enhanced with a larger
number of speech samples. Since speech features alone have been utilized, there is no
dependency on manual transcriptions or tools to convert speech to text. Since speech data
can be obtained remotely from sources such as telephonic conversations, the approach has
substantial potential in preliminary screening and diagnosis of dementia.

Considering future directions for this area of research, other features that can be
extracted from text and other sources can be used along with speech features to provide
improved results. In addition, future research can be directed towards a model that



Sensors 2022, 22, 9311 16 of 18

minimizes the effort required in pre-processing the raw data. Additionally, research can
be channeled towards utilizing other significant and unexplored speech features and
methods to obtain more robust and domain independent ML and DL models. In this study
we utilized only audio recordings in which the participants and instructor conversed in
English language. In future research, multilingual studies can be performed utilizing audio
recordings from various languages and analyzing the significance of speech features. With
advances in speech processing, ML and DL and more sophisticated algorithms that can
potentially yield superior results have been gaining attention in recent times.
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